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FOREWORD

Internal stresses significantly affect the near room temperature phase
transformation occurring in NITINOL (TiNi) alloys. A knowledge and
understanding of these effects is useful for the successful design and
operation of devices using the shape memory effect of this alloy.

A prior report of this Center presented data on a programmed reduction of
stresses in strained wire. The work reported now confirms those results and
shows that the reversal of those effects can be generated in non-strained wire
by the introduction of cold work. Furthermore, cold working the annealed
alloy in its austenitic versus martensitic condition can change its phase
transformation response during subsequent heating and cooling cycles.

The author expresses his appreciation to W. J. Buehler for early guidance
in working with these unusual alloys. He would also like to express
appreciation to his wife, Estelle, for her gracious support during the years
of researching them.

Funds for this work were provided by the NSWC Independent Research
Program.
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INTRODUCTION

NITINOL ii a nickel-titanium alloy with varied industrial and commercial
applications. Most of them are based on its "shape memory" effect.
This effect is that warming the 6% cold strained alloy returns it to a
previously "annealed-in" shape. The phenomenon is due to a crystallographic
phase transformation, from martensite to austenite, usually over a 20 C
temperature range selected between -300C and +100 0C.

The influence of residual stresses (from prior severe cold4work) on this
transformation was reported by Goldstein, Kabacoff, and Tydings. They
showed that the electrical resistance and calorimetry data associated with the
shape memory effect were substantially affected by the stepwise reduction of
these residual stresses. Strain, the easily measurable resultant of stress,
was used as an approximation of the stresses present.

The results reported in Reference .4 imply that the reverse procedure,
i.e. the introduction of stresses into a fully annealed NITINOL should
generate the same phenomena sequence, in reverse. This prediction is examined
now with respect to electrical resistance and calorimetry.

Resistance and calorimetry data are useful in the prediction of shape
memory effect performance. They indirectly enable examination of details in
the transformation process, including effects of stresses and annealing
treatments on the shape recovery of the alloys.

EXPERIMENTAL PROCEDURES

The equiatomic NiTi composition is Ti-55.06 weight-percent nickel. A
slightly titanium-rich composition of Ti-54.9 weight-percent nickel was
selected for this experiment. The recovery transformation temperature of this
binary alloy is above ambient, making it convenient to introduce strain in
either its martensitic (cold) or austenitic (warm) conditign. The "cold"
structure is a slightly (monoclinic) distorted B 19 ce! 8 ', and the "warm"
structure is an ordered, body centered cubic B 2 cell.

The alloy was induction melted, hot worked, and cold drawn to 0.031-inch
diameter wire. It was annealed at 750 0C for 1/2 hour, and air cooled. It
was identified as Heat D 4046.

The specimen wires were strained by tensile elongation in a hydraulic
draw bench. Strain rate was 1/2 inch/inch/second. Total strain was
calculated on the basis of the before and after distance between two
crimped-on short copper sleeves. The specimen wires were 6-inch lengths, e7
contiguous pieces from a single drawn length. Cold stretching was done while
injecting a -45 C Freon spray into a 1/4-inch diameter plastic sleeve

1F
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surrounding the wire. Warm stretching was done with 400 0C heated air from
a forced-air heat gun. These procedures assured that the wire specimen was
martensitic or austenitic, as desired, during straining.

Non-linear changes in electrical resistance are ofteg yeed to detect the
temperatures of the phase transformation in NITINOL wires. ' During
cooling, the changes are good indicators for both 10% strained and
fully-annealed wire. During heating, the changes in relistance are usually
suitable indicators for strained wire but inadequate for fully annealed
NITINOL wire.

Resistance measurements were performed within an environmental chamber
fitted with conventional four point electrical contacts. Their output was to
a Kiethley 503 Milliohmmeter, filtered, and recorded as the ordinate on an X-Y
recorder. A 40 Hz current was used. Temperatures in the chamber were sensed
by a copper constantan thermocouple placed within 3/4 inch of the midpoint of
the specimen wire. The thermocouple output was corrected for room temperature
with an electrical feedback circuit and fed to the x axis of the X-Y recorder.
Thus, the abscissa of the graphed data is very slightly non-linear, reflecting
the deviations of copper constantan thermocouples in this temperature regime.
Heating of the chamber was done by electrical resistance elements; cooling was
by the evaporation of carbon dioxide introduced as a liquid jet. Temperature
gradients within the chamber were minimized during both heating and cooling by
a high velocity internal blower. True temperature of the wire specimen is
estimated to be within +5 0C of the recorded value.

Differen fa 4 scanning calorimetry detects the heat of
transformation during heating and cooling. Our tests were performed
in a Perkin Elmer Model DSC-2C. The calorimetry specimens were cut from the
wires following resistance tests. They were heated in the DSC to 130°C
and stabilized for a few minutes. Cooling to -120°C then commenced, with
automatic recording of the energy evolved by the specimen. A standard rate of
temperature change of 200C/minute was maintained at the specimen during
cooling and heating.

The precision of the calorimeter is estimated to be +1/2% for
temperature.

RESULTS AND DISCUSSION

RESISTANCE

The fully annealed D 4046 specimen has the resistance versus temperature
curve (Figure 1) which is typical of fully annealed NITINOL alloys. The
transformation during cooling initiated at 550C and completed at 35 °C.

00During heating, it started at 80 C and completed at 940C. The changeduring cooling is the more pronounced of the two.

A strain free specimen transforms from austenite to martensite during
cooling. hafgmic movement path is via a rhombohedral (R)
structure, '' which is a slight repositioning of respective nickel and
titanium atoms. In a strain free specimen, this repositioning is a transient
that occurs during the transition from the ordered 3 2 (austenite) phase into
the complex martensite structure, or during its reversal. The R structure can

2
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be retained over an extended temperature band during cooling simply as a
function of residual and/or self-generated age hardening stresses present in
the alloy.

4

In strained NITINOL the formation of an R structure which does not
immediately transform to martensite during the continued cooling produces
additional stress in the parent phase (from which R is being formed). This,
in turn, materially affects electrical resistance, increasing it sharply.
Thus the increasing stress, which is concomitant with the increasing amount of
R formed, causes the observed increase in electrical resistance which develops
during the cooling leg of the transformation cycle. On further cooling, the R
structure/austenite becomes increasingly unstable. When shear strength is
exceeded locally, R starts transforming into martensite. This is signalled by
a reduction in electrical resistance. As cooling continues the electrical
resistance falls with the increased amount of martensite formed and the
consequently reduced stress.

There is a substantial difference in the magnitude of the resistance
peaks obtained during the cooling and subsequent heating of a strained
specimen. 9Ff ample, the peak may constitute a 15% increase in
resistance9 '- '  during cooling, but be barely detectible during heating.
This peculiarity results from the alloy having a high electrical resistivity,*
having moduli, i.e. two levels of stress-sensitivity, and a reversing (not
reversible) martensite/austenite transformation in the near room temperature
regime. (In comparison, a steel which forms martensite at 200 C does notreverse itself and form austenite until above 723°C.)

A further explanation of this difference in the cooling and heating
resistance curves arises by considering the two starting structures. The
parent austenitic phase has no stress relief mechanisms available to it other
than those occurring during heating well above 100 C. Thus it does not
self relieve any strains generated during cooling below 100 C, and
reflects this in its electrical resistance. On the other hand, a daughter
martensitic structure can internally self reliT4e strain by lath growth,
reorientation, and internal twin reorientation despite its temperature0

being under 100 C. Thus, during cooling, R structure forming from parent
austenite creates high stresses, and a substantial resistance peak. During
heating, R forming from the daughter martensite creates much less stress in
the matrix due to the self relief mechanisms, and therefore has a smaller
resistance peak. The result is that electrical resistance is a less sensitive
indicator of transformation during the heating of NITINOL than during its
cooling.

The respective sensitivities of martensite and austenite to stress are
illustrated by1,heir different onsets of strain hardening. As determined from
tensile tests, these values are 4% for martensite and 0.2% for
austenite.

A specimen of annealed D 4046 wire was strained 1% at 22
(martensitic condition), and measured for resistance changes as compared to an

*The electrical resistivity of NITINOL is high, ranging from 80 micro ohm cm
for annealed austenite to 132 micro ohm cm for the severely strained metal.
Copper has a resistivity of about 2 micro ohm cm.

4
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annealed wire. Based on the ',. strain hardening limit, no -;ignificant change
in resistance was to be expected and none, as shown by comparing Figure 2 with
Figure 1, was found. This same specimen was then heated into the austenitic
condition and strained 2%. This permanent strain caused the transformation
into martensite to occur via the intermediate R structure, which was retained,
as previously discussed. Formation of R caused the increase of resistance, as .
shown in Figure 3, commencing at 620C and peaking at 450 C. p

At 450 C, the R started to transform into martensite, reducing strain
and lowering the resistance. The 2% straining of the austenite caused the
formation of this electrical resistance peak. Therefore, the inference arises
that data based on binary alloy specimens with significant increases in
resistance during cooling are based on testing of non-equilibrium specimens.

Verification and extension of the results shown in Figure 3 were
obtained by warm straining another specimen 7%. This resulted in the data
shown in Figure 4, with a more pronounced peak during cooling and slight
strengthening of the peak during heating.

The curves (a), (b), and (c) of Figure 5 illustrate the effect of 7%
martensitic (cold) strain on resistance during successive transformations.
These data are from a single specimen, obtained by three cool-heat cycles
performed without disturbing the specimen. They illustrate the relationship
between strain in the alloy and the resistance curves during transformation.
They also show that the temperature at which straining is done on a NITINOL
alloy affects its subsequent transformation characteristics.

This specimen was martensitic and remained so during its straining and
its subsequent transfer (at room temperature) to the resistance testing
chamber. This deduction is based on the observation that it did not transform
during the cooling leg 1-2 of curve (a) of Figure 5, nor during its heating

0leg, 2-3, up to the temperature of 96 C. Therefore, the trace of thismartensitic wire was essentially reversible to -31 0C, leg 3-4.

Upon subsequent heating, leg 4-5 of curve (b), the transformation from
00

the 7% strained martensite into austenite began at 105°C and completed at

120°C. The newly formed austenite was strained to the extent that there
was retained within it plastically deformed untransformed martensite. This
martensite was of greater volume than its corresponding austenite, thus
straining the newly formed B 2 structure. Cooling this specimen thus
generated R structure from the strained B 2, starting at 64 C of leg 5-6.
Hartensite formation commenced at 42 C, and terminated at 12 C. Curve
(b) thus demonstrates again the previously postulated influence of stress on
the transformation of NITINOL in producing the pronounced peak in resistance.

Curve (b), heating leg 4-5, resulted from the 7% martensitically
strained specimen undergoing its first transformation, starting at 105 C.
Its transformation upon heating a third time, leg 6-7 of curve (c), started at
a much lower temperature, estimated as 50°C. The variance between the two
curves (leg 4-5 versus 6-7) is caused by the difference in the respective
daughter martensites from which each transformation started. Curve (b)
started with a 7% strained martensite; curve (c) started with a martensite
which had been altered by the immediately preceding heating and cooling.

During that prior heating to 120°C, 4 of the 7% martensitic strain was
eradicated during the conversion of the specimen into austenite. Therefore,

5
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the martensite being heated the third time was effectively a 31" plastically
strained martensite. Furthermore, this conversion (leg 6-7) was via the
intermediate R structure into austenite. Thus this second conversion into
austenite was less pronounced, and at lower temperatures than in curve (b)
because of the previously discussed strain relief mechanisms available to the
freshly formed daughter martensite. Cooling again, leg 7-8, is the same as
the previous cooling leg 5-6, indicating a relative stability of the formation
process for R structure for low numbers of temperature cycles.

After the resistance tests were completed, the strain in the martensitic
wire was measured and was in fact 3% at 220C, following the last cooling
cycle.

Reference 4 reported that reduction of width and amplitude of the
resistance curve peaks of cold-worked NITINOL resulted from increased
annealing times and temperatures. In the current work, it is shown that
straining generated and increased the resistance peaks in fully annealed wires
which previously had no transformation peaks.

Also, it was shown4 that it was necessary to heat a severely cold
worked alloy to temperatures over 100 C to allow first time shape recovery
(contraction) effects to occur. In the current work, it required a
temperature of 100 0C for the annealed material to complete its
transformation, and 120 0C if it was martensitically strained 7%.
Furthermore, the plastic portion (3%) of this strain survived the short time
heating to 120 0C, and then affected the subsequent heating transformation,
changing its finish temperature from 1200C to 850C. Based on the
prior work, heating substantially above 120°C for prolonged time would be
necessary to relieve the 3% strain.

The resistance data of the current4work using a slightly titanium-rich
alloy are compatible with the prior work with a slightly nickel-rich
alloy. They suggest that typical manual demonstrations of the shape memory
effect in NITINOL, which is usually strained over 6% during such
demonstrations, are being perfo-rmed using material that then has enough
residual stress in it to significantly influence its transformation phenomena.

CALORIHETRY

Sections of three specimen wires were evaluated for transformation
characteristics in the differential scanning calorimeter following their
resistance tests. Table 1 lists the data obtained in calorimetry and
resistance.

As was the case in resistance, straining made more drastic changes in
calorimetry during cooling than during heating. This reflects again the
difference in strain relief in martensite versus austenite, as was earlier
presented with respect to electrical resistance.

The transition of austenite into martensite for a fully annealed
specimen is represented by the smooth, almost symmetrical calorimetry curve
shown in Figure 6(c).* The presence of stress causes the drastic changes

*The parenthetic (c) and (h) refer to the cooling and heating legs of the
differential scanning calorimetry curves.

10



NSWC TR 87-1 26

- a 0 ) c

P 00

(a4a
M4 c

0.

0 r0

00 cc CC
W 0 L 0 r4 L
ca C.

cc wc
S0 1- .

o cc
I- cc2''

IL

00

0 ~0- CC CC (% C

a. 0 o r-
ccLuu

CC 0 4 M C
OC IL

cc UWl z-CC CCwOL

-j 00 0

C.)Ul 4cc4

Ow wi 02l i
2 0> >)~ = a

u ~ ~0 0 2uC VL

LU~w~LW LU - < 4 L

L- Lu C W L W wu u

z2(420o004 0
I~4 -C u Z .~



NSWC TR 87-126

shown in Figure 7 (c). The transformation started earlier during the cooling
leg, was interrupted, and then finished later, i.e. at a lower temperature,
all the result of the 7% austenitic straining.

The martensitically stressed specimen, Figure 8(c), was still strained
(to about a 3% level) after its resistance testing. Thus, it produced an
intermediate curve if compared to Figures 6(c) and 7 (c). Also, the width of
its transformation temperature range (400C) is intermediate to those of
the annealed (210C) and the 7% austenitic strained specimens (620C).
The stress in the specimen was insufficient to produce dual peaks, such as are
shown in Figure 7(c).

Comparison of the heating curves of Figures 6-8(hg shows that the width
of the transformation temperature range is the same, 25 C, in each case.
The temperatures for start and finish of transformation listed in Table I are
based on visual examination of the figures. Transformation was arbitrarily
considered to start at the sharp increase in transformation rate.
Determination of the inflection points of the curves was aided by judicious
placement of tangent 450 angular protractors. The values thus obtained
are considered to represent the start and finish of almost all of the
transformation product. This enables a more meaningful comparison of the
data. They are also the values that are probably more useful to product
designers than are the values which would be obtained from extrapolation of
the branches of the curves. The correspondence of the resistance and
calorimetry data presented in Table 1 is considered very reasonable in light
of the difficulty in determining end points which sometimes appear asymptotic.

Both the start temperatures (e.g., 660C, 600 C, and 53 1C,
Table 1) and finish temperatures (e.g., 900C, 85°C, and 780C) of

transformation during heating were lowered as a function o increased residual
stress. This is because the residual internal stress aids4 and starts R
structure formation earlier, i.e. at a lower temperature during heating. This
is quite different tha 0 an applied opposing external stress, such as that
described by Schuerch, which requires higher temperatures to effect
shape memory transformation during heating.

In the latter case, the external stress opposes the normal atomic
movement of the alloy in returning to the parent austenite shape. This is
usually the case in industrial applications intended to develop the force and
movement associated with the NITINOL transformation. Thus, directionality as
well as magnitude of the stress, with respect to the specimen's "annealed in"

shape, affects the transformation temperatures of NITINOL.

CONCLUSIONS

This work has shown that the unusual electrical resistance and
calorimetry peaks demonstrated by NITINOL during its transformation can be
generated and influenced by the introduction of stress into the alloy.

Strain, the readily quantifiable measure of stress, can be introduced
into either the equilibrium austenitic or the martensitic structure of
NITINOL, and survive temperatures up to 1200C. The temperature for the
first time transformation of strained martensite into austenite is a function
of the amount of strain present. Subsequent transformations may be at a

12
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differenC (but c'nsistent) te-necacire from the first one due h e
aradication of part of the strain diring the first transformation. The
results obtained in this work support a previously presented thesis, namely,
stresses have a very considerable effect on the transformation of NITINOL.
These conclusions are based on results obtained from a slightly titanium-rich

NITINOL.

RECOMMENDATIONS

This is the second paper emanating from the Naval Surface Weapons Center
aimed at illuminating khe great effect that stress has on the transformation
of NITINOL. The first dealt with the effects of residual stresses and
also with the stress effects arising from the precipitation of excess nickel

in solution. The removal of those stresses in a cold worked, nickel-rich
NITINOL was reviewed as a function of annealing treatments. The resultant
data were couched in terms of length contraction (shape memory response),
electrical resistance, and calorimetry.

In this second paper, the same phenomena, i.e. the effect of stress on
the transformation, was again examined, this time by the introduction of
stress into the fully annealed alloy. Using again the criteria of resistance
and calorimetry changes, the results on a titanium-rich NITINOL confirmed and
expanded the prior work. Among the results are that the stresses introduced
into the alloy have some similar and some differing consequences, depending on
the temperature or the atomic structure extant during the stressing.

Although it would be desirable to correlate x-ray data with the
resistance and calorimetric effects, there is an even more informative and

commercially useful third investigation considered to be of primacy. This

would be quantitative correlation of the shape memory response with resistance
and calorimetry in adequately characterized strained materials, both nickel
and titanium-rich, respectively. Such information would enable designers to

construct devices using NITINOL with performance nearer the intended with
respect to temperatures, forces, extent of recovery, and durability of the
recovery phenomenon. It would also contribute much to a suitable quality
control program as is needed to assure the known and stable property
performance of primary alloy production.

II
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